Теплофизические свойства

Материал из ВикиПро: Отраслевая энциклопедия. Окна, двери, мебеля
Перейти к: навигация, поиск
Мне нравится
2

Теплофизические свойства имеют большое значение как при варке стекла и выработке изделий, так и при их эксплуатации.

Теплоемкостью тела или системы тел называют количество тепла, затрачиваемое на повышение температуры тела или системы тел на один градус в определенном термодинамическом процессе (при постоянном объеме, давлении и т.д.). Удельной теплоемкостью называют теплоемкость, отнесенную к единице массы.Единица измерений удельной теплоемкости Дж/(кг.°С).С повышением температуры удельная теплоемкость возрастает, причем тем медленнее, чем выше температура. Для области стеклования характерно большее изменение теплоемкости при изменении температуры. Теплоемкость зависит от химического состава стекла: SiO2, Аl2О3, В2О3, МgО, Na2О и особенно Li2О повышают теплоемкость стекла; оксиды тяжелых металлов РbО, ВаО значительно снижают теплоемкость. Влияние других оксидов выражено слабее.

Теплопроводность характеризует способность тела передавать тепловую энергию в направлении более низких температур.Единица измерения теплопроводности Вт/(м.°С).Увеличение в стекле количеств SiO2, Аl2О3, В2О3,Fе2О3 повышает теплопроводность, а ВаО и РbО снижают ее. Теплопроводность промышленных стекол составляет 0,72-0,9 Вт/(м.°С).При высоких температурах передача тепла теплопроводностью характерна только для тонких (до 0,1 см) слоев стекла. При увеличении толщины слоя увеличивается интенсивность передачи тепла излучением. В связи с этим теплопроводность, определенная без учета толщины образца, называется эффективной теплопроводностью и включает в себя радиационную (лучистую) составляющую.Для технологических процессов варки стекла и формования изделий основное значение имеет прозрачность стекол для излучения в инфракрасной области спектра (теплопрозрачность). Теплопрозрачность уменьшают окрашивающие оксиды (особенно СоО, NiO, FеО и СuО).

С повышением содержания в стекле этих оксидов роль теплопередачи излучением уменьшается и возрастает роль теплопроводности.

Термическое расширение стекла характеризуется обычно температурным коэффициентом линейного расширения (ТКЛР) — a. Температурный коэффициент линейного расширения характеризует относительное увеличение длины образца стекла при нагревании на один градус.Температурный коэффициент линейного расширения зависит от химического состава стекла. Наименьшим температурным коэффициентом линейного расширения обладает кварцевое стекло (SiO2). Ввод остальных компонентов увеличивает ТКЛР. Особенно сильно в этом отношении влияние Na2О, К2О, СаО, ВаО, РbО. Наиболее распространены дилатометрические методы определения ТКЛР. Дилатометры фиксируют удлинение образцов при нагревании в определенном интервале температур.

Температурный коэффициент линейного расширения различных стекол находится в пределах (5-120).10–7 1/°С. Относительное увеличение объема при нагревании тела на 1°С называется температурным коэффициентом объемного расширения. Для твердых тел температурный коэффициент объемного расширения с достаточным приближением может быть принят равным b = Зa.

При определении температурного коэффициента линейного расширения обычно строят график зависимости удлинения образца от температуры (дилатометрическую кривую), по которой можно приближенно установить некоторые характеристические температуры для данного стекла (см рисунок 1.3). Каждой из этих температур соответствует определенная вязкость. Температура начала стеклования Тg соответствует вязкости 1012 Па.с и определяется как точка пересечения прямых, продолжающих прямолинейные участки дилатометрической кривой.

Температура начала деформации соответствует температуре максимума на дилатометрической кривой и вязкости 1010-1011 Па.с.

1.3 Дилатометрическая кривая расширения стекла и определение характеристических температур

Термостойкостью называется способность стекла сопротивляться резким изменениям температуры. Мерой термостойкости является температурный перепад, который выдерживает стекло без разрушения. Термостойкость имеет большое значение при использовании стеклотары (бутылок, банок), бытовой посуды (стаканов), термостойких стекол и других изделий. При изменении температуры окружающей среды (воздуха, воды и др.) в помещенном в нее стекле возникают напряжения, под действием которых стекло может разрушиться.

Возникновение напряжений обусловлено следующими факторами:

  • низкой теплопроводностью стекла;
  • появлением значительных температурных градиентов при нагреве или охлаждении;
  • неравномерным изменением размеров и объема отдельных участков нагревающегося или охлаждающегося стекла.

Рассмотрим механизм возникновения напряжений в твердом стекле применительно к условиям эксплуатации изделий. Для наиболее массовых изделий (стеклянная тара, бытовая посуда, термосные колбы), температуры окружающей среды (воды) не превышают 100°С.

Рис. 1.4. Схемы процессов быстрого охлаждения (а) и быстрого нагревания (б) стекла (стрелки показывают направление действия возникающих напряжений)

В этом случае стекло реагирует на температурные изменения как упругое тело и возникают временные термоупругие напряжения, исчезающие (если стекло не разрушилось) при выравнивании температуры. Пусть имеется стеклянный шар, который мысленно можно разделить на ядро и внешний слой. Последний в свою очередь разделен на секторы (рис. 1.4 а). Если шар нагрет (положение 1), все его части имеют одинаковую температуру, поэтому напряжения внутри шара нет. При резком охлаждении внешний слой будет остывать значительно быстрее, чем ядро, поэтому объем шара уменьшается неравномерно. Если бы секторы внешнего слоя не были связаны между собой, то каждый из них сжался бы, а между ними образовались свободные пространства (положение 2). Но так как частицы стекла во внешнем слое связаны, между ними возникают напряжения растяжения (положение 3), которые могут довести внешний слой до разрушения, т.е. до образования радиальных трещин, идущих от поверхности. Между внешним слоем и ядром будут создаваться напряжения сжатия, так как ядро противодействует сжатию внешнего слоя под действием более резкого охлаждения последнего.

При резком нагревании (рис. 1.4 б) (положение 1) внешний слой, нагреваясь быстрее ядра, стремится увеличиться в объеме и отслоиться от ядра (положение 2). Но так как он связан с ядром, то между ними возникают напряжения растяжения. Между частицами внешнего слоя, которые не могут оторваться от ядра, но увеличиваются в объеме, возникают напряжения сжатия (положение 3). Если принять во внимание, что стекло сопротивляется растяжению во много раз хуже, чем сжатию, а прочность стекла сильно зависит от состояния поверхности, и резкий тепловой удар получает всегда поверхность стекла, то для стекла более опасно быстрое охлаждение, чем нагревание.Термостойкость стекла зависит главным образом от температурного коэффициента линейного расширения, модуля упругости, предела прочности при растяжении. В основном термостойкость стекла определяется температурным коэффициентом линейного расширения: чем он меньше, тем выше термостойкость. Для стеклоизделий термостойкость в значительной степени зависит от состояния поверхности и однородности стекла. Сколы, царапины, трещины, неоднородность состава и плохой отжиг — все это резко снижает термостойкость стекла. Плохая теплопроводность способствует неравномерному распределению напряжений по сечению охлаждающего стекла при термическом воздействии, поэтому чем тоньше и равномернее по сечению стенки изделия, тем выше его термостойкость. Именно этими факторами обеспечивается высокая термостойкость термосных колб.

Вклад участников

Мушников Евгений,

Цыганкова Анастасия

Обратная связь Автору