Звукоизоляция окон

Материал из ВикиПро: Отраслевая энциклопедия. Окна, двери, мебеля
Перейти к: навигация, поиск
Мне нравится
12

С точки зрения проектирования акустического микроклимата помещений, под шумом понимается всякий нежелательный звук, вызывающий у человека негативные ощущения.

Физическая природа звука связана с возникновением и распространением волновых колебаний в каком-либо веществе, будь то воздух, жидкость или твёрдое тело. Распространение звуковых волн в воздухе происходит за счёт его попеременного сжатия-разрежения, создаваемого некоторым источником звука.

Попеременное сжатие и разрежение воздуха будет наблюдаться в некоторой области пространства вокруг источника, называемой в специализированной литературе звуковым полем. При этом в пределах звукового поля будет наблюдаться разница между давлением в слое сжатия или разрежения и обычным атмосферным давлением, называемая звуковым давлением (в ряде источников – «акустическое давление»).

Свойства звуковой волны характеризуются тремя основными показателями

  1. частотой,
  2. длиной волны и
  3. скоростью распространения волны.

Частота звука f – определяет количество колебаний в одну секунду и измеряется в Герцах [гц]. Величина в 1 герц – это частота, при которой в одну секунду происходит одно колебание. Величина названа по имени немецкого учёного Генриха Герца.

Длина волны l– определяет расстояние между ближайшими слоями сжатия (или разряжения) и измеряется в метрах [м].

Процесс определения скорости звука в воздухе занял несколько столетий. Первые опыты в этом направлении относятся к 1630 году и связаны с именем французского учёного Марена Марсенна. Спустя полвека Исаак Ньютон сделал первую попытку теоретического вычисления скорости звука полученные им данные впоследствии были уточнены в работах Пуассона и Лапласа. И только в 1822 году группой учёных в составе Гей-Люссака, Араго, Гумбольта и др. вблизи Парижа были поставлены опыты, подтвердившие выведенные ранее теоретические зависимости для скорости звука в воздухе.

Учёными было установлено, что скорость звука в воздухе зависит от его температуры и составляет 331,5 м/с при 0 °С и 344 м/с при 20 °С. В акустических расчётах принимается величина скорости звука c при нормальном атмосферном давлении и температуре 290 К (17 °С), соответственно равная 340 м/с.

Длина волны, частота и скорость звука связаны между собой следующей зависимостью:

L = c × f

Основной акустической величиной, используемой для оценки изменения громкости звука при изменении потока энергии звуковой волны, является уровень звукового давления L, определяемый как

L = 20 lg (P / Po),
где
Р - значение звукового давления в данной точке звукового поля; 
Po = 2 x 10-5 Па – звуковое давление, соответствующее порогу слышимости

Звуковое давление измеряется величиной, называемой децибел [дб] и, соответственно, составляющей десятую часть от единицы громкости – бел [б].

Разница уровней звукового давления в 1дб соответствует минимальной величине, различимой слухом.

0 дБ SPL — слышно собственное дыхание и сердце;
5 дБ SPL — почти ничего не слышно;
10 дБ SPL — почти не слышно — шёпот, тиканье часов, тихий шелест листьев;
15 дБ SPL — едва слышно — шелест листьев;
20 дБ SPL — едва слышно — норма шума в жилых помещениях;
25 дБ SPL — тихо — сельская местность вдали от дорог;
30 дБ SPL — тихо — настенные часы;
35 дБ SPL — хорошо слышно — приглушённый разговор;
40 дБ SPL — хорошо слышно — тихий разговор, учреждение (офис) без источников шума;
50 дБ SPL — отчётливо слышно — разговор средней громкости, тихая улица, стиральная машина;
60 дБ SPL — шумно — обычный разговор, норма для контор;
65 дБ SPL — шумно — громкий разговор на расстоянии 1 м;
70 дБ SPL — шумно — громкие разговоры на расстоянии 1 м, шум пишущей машинки, шумная улица, пылесос на расстоянии 3 м;
75 дБ SPL — шумно — крик, смех с расстояния 1м; шум в железнодорожном вагоне;
80 дБ SPL — очень шумно — громкий будильник на расстоянии 1 м; крик; мотоцикл с глушителем; шум работающего двигателя грузового автомобиля;
85 дБ SPL — очень шумно — громкий крик, мотоцикл с глушителем;
90 дБ SPL — очень шумно — громкие крики, пневматический отбойный молоток, тяжёлый дизельнй грузовик на расстоянии 7 м, грузовой вагон на расстоянии 7 м;
95 дБ SPL — очень шумно — вагон метро на расстоянии 7 м;
100 дБ SPL — крайне шумно — громкий автомобильный сигнал на расстоянии 5—7 м, кузнечный цех, очень шумный завод;
110 дБ SPL — крайне шумно — шум работающего трактора на расстоянии 1 м, громкая музыка, вертолёт;
115 дБ SPL — крайне шумно — пескоструйный аппарат на расстоянии 1 м;
120 дБ SPL — почти невыносимо — гром (иногда до 120 дБ), отбойный молоток на расстоянии 1 м; порог болевого ощущения;
130 дБ SPL — боль — сирена, шум клёпки котлов;
140 дБ SPL — контузия — максимальная громкость на рок-концерте; взлёт реактивного самолёта на расстоянии 25 м;
145 дБ SPL — контузия — взлёт ракеты;
150 дБ SPL — контузия, травмы — взлёт ракеты на Луну с экипажем, на расстоянии 100 м;
160 дБ SPL — шок, травмы, возможен разрыв барабанной перепонки — выстрел из ружья близко от уха; ударная волна от сверхзвукового самолёта или взрыва давлением 0,002 МПа;

В качестве величины, указываемой в нормативных строительных и санитарно-гигиенических документах, а также на экологических шумовых картах, выстраиваемых на основании натурных измерений шума у фасада здания, применяется так называемый «уровень звука» (или «уровень шума» во многих литературных источниках). Величина уровня звука Lа представляет собой значение уровня звукового давления L, скорректированного в соответствии с особенностями восприятия звука человеческим ухом на различных частотах.

Значения уровня звука измеряются в [дбА] (децибел-А), что указывает на поправку, вводимую в значения уровней звукового давления, измеренных в децибелах, в соответствии с кривой частотной коррекции А, которая моделируется на акустических приборах.
Допустимые уровни шума в жилых и общественных зданиях регламентируются следующими нормативными документами:

В соответствии со всеми перечисленными документами допустимый уровень звука в жилых комнатах должен составлять не более 40 дБА в дневное время – с 7 00 до 23 00 и не более 30 дБА в ночное время – с 23 00 до 7 00 .

Шум большинства городских источников включает звуки почти всех полос частот слухового диапазона, но отличается распределением уровней звукового давления по частотам и неодинаковым изменением их по времени. Таким образом, шум окружающей человека среды образуется в результате сложного суммирования шумов многих источников, причем распределение разных видов шума способно изменяться от одного момента времени к другому.

Тем не менее, нужно понимать, что снижение уровня шума с 85-90 дБА (что соответствует скоростной автомагистрали), до 40 дБА в помещении, представляет из себя сложнейшую техническую задачу, даже, отбрасывая на первом этапе необходимость проветривания.

Звук распространяется от источника равномерно во все стороны, если на его пути нет никаких препятствий, размер которых достаточно велик. Звуковые волны, как и всякие волны, способны огибать препятствия, «не замечать» их, если их размеры меньше, чем длина волны. Длина слышимых в воздухе звуковых волн колеблется от 15 м до 0,015 м. Если у препятствий на их пути меньшие размеры, например, одиночные стволы деревьев, то волны их просто огибают. Препятствие больших размеров отражает звуковые волны по тому же закону, что и световые: угол падения равен углу отражения.

При проектировании защиты жилых зданий от воздействия транспортного шума необходимо понимать, что применение активной шумозащиты является основным и наиболее эффективным методом. Вплоть до начала экономических реформ и формирования новых экономических отношений, вопрос борьбы с шумом в г. Москве рассматривался, прежде всего, как градостроительный.

Законы строительной акустики

Существует несколько законов строительной акустики, положенных в основу проектирования шумозащитных окон.

Один из них связан с закономерностями восприятия звука человеком на различных частотах. В строительной технике принято рассматривать диапазон частот, воспринимаемый органами слуха человека, в интервале от 32 до 4000 Гц.

При проведении акустических расчетов и измерений частотный спектр слышимого шума разбивается на октавные полосы частот (октавы), ограниченные нижней частотой f1 и верхней частотой f2, при этом f2/f1=2. Таким образом октава – это удвоение частоты. В качестве частоты, характеризующей полосу в целом, берется среднегеометрическая частота.

f=w f1/ f2

Крайние и среднегеометрические частоты октавных полос стандартизованы и приведены в таблице.

Номер октавы 1 2 3 4 5 6 7
Частоты низкие средние высокие
Октавные полосы частот, f1-f2, Гц 45-90 90-180 180-355 355-710 710-1400 1400-2800 2800-5600
Среднегеометрическая частота, Гц 63 125 250 500 1000 2000 4000

Наибольшую чувствительность к звуковым воздействиям человек проявляет на средних частотах (в интервале приблизительно от 1000 до 3000 Гц), несколько хуже слышит высокие (примерно от 3000 до 20 000 Гц), и наименее чувствителен к звуку на низких (примерно от 20 до 400 Гц).

Шум большинства городских источников включает звуки почти всех полос частот слухового диапазона, но отличается разным распределением уровней звукового давления по частотам и неодинаковым изменением их по времени. Транспортный шум является низкочастотным, и для его снижения важен диапазон частот приблизительно до 1000 Гц.

По своей природе, транспортный шум, падающий на фасад здания, является так называемым воздушным шумом, возникающим при излучении звука источником в воздушное пространство. Звуковая волна достигает какого-либо ограждения и вызывает его колебания. Колеблющееся ограждение, в свою очередь, излучает звук в смежное помещение, и таким образом, воздушный шум достигает воспринимающего его человека.

80605902.jpg

Очевидно, что падающей звуковой волне гораздо труднее «раскачать» массивные тяжёлые стены, нежели тонкие и относительно лёгкие стёкла или стеклопакеты. Этот эффект описывается в строительной акустике законом массы, согласно которому звукоизолирующие качества конструкции возрастают в логарифмической пропорциональной зависимости с увеличением её массы и частоты падающего звука.

Соответственно, при падении звуковых волн от транспортного потока на здание, подавляющая доля шумовой нагрузки воспринимается окнами. Именно они, при отсутствии у фасада здания экранирующих элементов активной шумозащиты, практически полностью определяют степень акустической защиты помещения. Степень акустической защиты, обеспечиваемой любой ограждающей конструкцией, в том числе и окном, принято выражать в виде разности уровней звукового давления на территории (в помещении), где находится источник шума L ист и в изолируемом помещении L пом. Разница уровней звукового давления L ист - L пом, таким образом, определяет шумозащитные качества конструкции, устанавливаемой на пути прохождения звуковой волны, и называется звукоизоляцией конструкции R [дБ], что может быть записано в виде соответствующего уравнения.

R = L ист - L пом (1)

В отечественной документации на окна, как правило, указывается индекс звукоизоляции окна Rw [дБ], определённый на основании лабораторных испытаний или, гораздо чаще – индекс Ra [дБА], представляющий собой индекс Rw, пересчитанный с учётом поправки на чувствительность человеческого уха по шкале А.

Индексы звукоизоляции Rw и Ra являются интегральными величинами и вычисляются относительно нормативной кривой звукоизоляции, содержащейся в строительных нормах, и учитывающей необходимую разницу уровней звукового давления L ист - L пом (см. уравнение 1), которая должна быть обеспечена на каждой из частот нормируемого диапазона (см. табл. 1) в соответствии с их слышимостью ухом человека.[1]

Основынми источниками внешнего шума в населенных пунктах являются:

  • транспортные потоки;
  • железнодорожные поезда;
  • средства воздушного транспорта;
  • источники шума внутри групп жилых домов.

Шум большинства городских источников включает звуки почти всех полос частот слухового диапазона, но отличается разным распределением уровней звукового давления по частотам и времени. Из этого следует, что шум окружающей человека среды образуется в результате сложного суммирования шумов многих источников.

В качестве основной величины для оценки шумового режима в местах отдыха, проживания и работы населения установлена осредненная величина-эквивалентный уровень звука LAэкв, измеряемый в дБА. Для оценки шума, создаваемого каким-либо источниом в населенных пунктах, применяют эквивалентный уровень звука, измеренный на определенном базисном расстоянии от него. В России в качестве базового применяется расстояние в 7,5м.

Расчетные шумовые характеристики транспортных потоков на улицах городов и дорогах для условий движения транспорта в час "пик" (таблица 27 СНиП II-12-77 "Защита от шума")

№& Категория улиц и дорог Число полос движения проезжей части в обоих направлениях Шумовая характеристика транспортного в дБА
1 Скоростные дороги 6
8
86
87
2 Магистральные улицы и дороги: общегородского значения:
  • непрерывного движения;
  • регулируемого движения
6
8
4
6
84
85
81
82
3 Магистральные улицы и дороги районного значения 4
6
81
82
4 Дороги грузового движения 2
4
79
81
5 Улицы и дороги местного значения:
  • жилые улицы;
  • дороги промышленных и коммунально- складских районов
2
4


2

73
75


79


Проанализируем схему прохождения звука через окно. С точки зрения акустики окно, установленное в оконном проёме является неоднородной конструкцией, состоящей из нескольких элементов, по-разному влияющих на передачу звука в помещение: элементов профильной системы - рамной части и переплётов; стеклопакета и монтажного шва.

При условии хорошего уплотнения окна основная доля проникающего звука приходится на стеклопакет. Передача звука через стеклопакет осуществляется следующим образом.

Steklo.JPG

Звуковые волны падают на наружное стекло, имеющее массу 1 м 2 m1, и вызывают в нём колебания. Находящийся в прослойке воздух выполняет роль амортизатора, в котором эти колебания затухают. Таким образом, на внутреннее стекло с массой 1 м 2 m2, приходит уже ослабленное звуковое воздействие, которое, в свою очередь, возбуждает колебания в этом стекле. Колеблющееся внутреннее стекло излучает звук в помещение.

Полностью погасить звуковые колебания такая система не в состоянии; прохождение некоторой доли падающего звука в помещение — неизбежно в силу возникновения резонансных явлений. Теоретически и экспериментально установлено, что стеклопакет как конструктивная система имеет два основных резонансных диапазона. Первый резонанс (в интервале частот от 100 до 400 Гц) имеет место при совпадении частоты падающих звуковых волн f с собственной частотой колебания остекления f0. На этой частоте стёкла начинают совершать ритмические, усиливающие друг друга колебания, повышая тем самым прохождение звука через стекло. Звукоизоляция стелопакета в этот момент резко падает. Второй резонанс (пространственно–частотный) имеет место, как правило, в диапазоне частот от 800 до 3000 Гц. В этот момент звукоизоляция стеклопакета ухудшается за счёт резкого возрастания амплитуды колебаний каждого из стёкол.

Звукоизоляция окон зависит от трех факторов:

  1. толщины стекол,
  2. величины воздушного промежутка
  3. и герметичности притвора.


Изменяя толщину воздушного промежутка между стёклами, а также соотношение их масс, мы можем добиться смягчения резонансных эффектов. При этом повышение звукоизоляции стеклопакета в основном будет достигаться за счёт максимально возможного выведения резонансных частот в диапазон, наиболее плохо слышимый человеком.

Влияние герметичности притвора наглядно видно из сравнения звукоизоляции обычного спаренного окна со стеклами 3 мм: без прокладок RA тран = 21 дБА, с одной прокладкой 27 дБА, с двойной прокладкой 29 дБА и полностью герметичное (пластилином) 30 дБА.

Специалисты  из Чехии и Германии испытывали стеклопакеты с заполнением различными газами. По их результатам заполнение аргоном, неоном, углекислым газом, водородом и фреоном практически не улучшает звукоизоляцию, отклонение от результатов для аналогичных стеклопакетов с воздухом находятся в пределах ± 1 дБА по интегральной оценке. Единственный газ, дающий устойчивое увеличение звукоизоляции на 2-3 дБ, это шестифтористая сера (SF6).
Оптимальными характеристика обладает система со стеклами различной  толщины. В этом случае частоты звуковых волн не совпадают, частотная характеристика сглаживается и не имеет провалов.

В рекламных листах оконных компаний, как правило, приводится значение индекса звукоизоляции Rw, выраженное в дБ, полученное при испытаниях в лаборатории под воздействием постоянного шума, оказывающего такое же воздействие на человека, как и непостоянный городской шум. Величина Rw не учитывает специфику воздействия транспортного шума и определяется, исходя чисто из разницы уровней звукового давления без учета звукопоглощения в конкретном помещении. При этом в большинстве практических случаев величина RА ≈ 0,6Rw + 6 (2)  [2]

Приведем соотношение индекса звукоизоляции Rw (f также индекса Ra, приближенно рассчитанного по формуле 2, с реальными звукоизоляционными качествами остекления, для конструкций)

№ п/п
Конструкция остекления                     
Индекс               изоляции Rw (дБ)
Индекс             изоляции Ra (дБа)
Одинарные стекла
1
3мм
24
20,4
2
4мм
26
21,6
3
6мм
28
22,8
4
8мм
30
24
Двойное остекление (стеклопакеты
5
3-10-3
30,5
24,3
6
4-10-4
33
25,8
7
6-10-6
34,5
26,7
8
3-20-3
33
25,8
9
4-20-4
34
26,4
10
6-20-6
36
27,6
11
4-10-6
36
27,6

Двухкамерные стеклопакеты, при условии размещения стекла посередине между крайними стеклами не дает роста звукоизоляции, так как в такой системе происходит повышение резонансной частоты по сравнению с однокамерным стеклопакетом, до значений, максимально приближенных к области наилучшей слышимости. Так однокмаерный стеклопакет 4-12-4 имеет резонансную частоты 250Гц, а двухкамерный 4-12-4-12-4- 300Гц. При этом индекс изоляции Ra такого стеклопакета составляет все лишь 28Дб.

Высокие значения индексов звукоизоляции стеклопакетов, вплоть до Rw=38дБ достигается в основном за счет использования в стеклопакете стекол со специальным промежуточным слоем- акустической пленкой (триплекс). Акустическая пленка имеет толщину от 1 до 2мм и является своего рода демфером колебаний, обеспечивающим затухание звуковых волн непосредственно в стекле за счет трения.

Правильно запроектированные светопрозрачные ограждающие конструкции обеспечивают снижение уровня звука уличного шума LАэкв ул до эквивалентного уровня звука, допустимого для данного помещения LАэкв пом. Величина  LАэкв= LАэкв ул-LАэкв пом определяет значение звукоизоляции конструкции остекления от воздушного шума R. При проектировании окон принято также учитывать звукопоглощение- преобразование энергии звука, проникающего в помещение, в тепловую энергию- конструкциями стен, перекрытий, а также отдельных поглотителей- мебели, ковров и т.п.
Но даже самые хорошие стеклопакеты с высокими звукоизоляционными характеристиками не гарантируют аналогично высокой звукоизоляции всего оконного блока. Важнейшую роль играют стабильность геометрии и степень уплотнения окна: жёсткость и массивность оконного профиля, равномерность прижима створок к раме по всему контуру элементами периметральной фурнитуры, качество уплотняющих прокладок и материалов заполнения монтажного шва между оконным блоком и стеновым проёмом.

Значительно более высокие результаты по окнам, имеющим три стекла, можно получить путем установки дополнительной створки с одинарным стеклом. Например такие окна устанавливают в Финляндии. В такой конструкции за счет разницы воздушных промежутков между стеклами можно получить значение индекса изоляции Ra около 33-34 дБА.

Более подробные сведения по шумозащитным свойствам остекления изложены в статье "Основные принципы проектирования шумозащитного остекления".


Примечания

  1. И.В.Борискина, А.В.Захаров "Физическая природа шума и методы защиты от него"
  2. И.В.Борискина, А.А.Плотников, А.В.Захаров "Проектирование современных оконных систем гражданских зданий"

Вклад участника

Смирнова Дана

Обратная связь Автору